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In this paper a set of second-order partial differential equations for the generation of coor- 
dinates in a given surface has been developed and then solved numerically to demonstrate its 
potential for surface coordinate generation. The proposed equations are not some arbitrarily 
chosen equations but are a consequence of the formulae of Gauss and thus carry with them an 
explicit dependence on the geometric properties of the given surface. Furthermore, these 
equations are easy to solve and require only the specification of the bounding curves to 
provide the Dirichlet boundary conditions for their solution. Results of coordinate generation 
both in simply and doubly connected regions on some known surfaces, with the option of 
coordinate redistribution, have been presented. Extension of this technique to arbitrary sur- 
faces seems to be straightforward. 6 1986 Academic Press, Inc. 

I. INTR~OUCTION 

The problem of generating spatial coordinates by numerical methods through 
carefully selected mathematical models is of current interest both in mechanics and 
physics. A review of various methods of coordinate generation in both two- and 
three-dimensional Euclidean (R* and R3) spaces is available in [ 11, and reference 
may also be made to the proceedings of two recent conferences, [2,3], and a book 
[4] on the topic of numerical grid generation. 

This paper is exclusively directed to the problem of generation of a desired coor- 
dinate system in the surface of a given body and thus, in a basic sense, it is an effort 
directed at the problem of grid generation in a 2D non-Euclidean space. The 
mathematical model selected for this purpose is based on the formulae of Gauss for 
a surface and has been discussed by the author in earlier publications, [S-S]. The 
resulting equations are three coupled second-order quasilinear elliptic partial dif- 
ferential equations with the Cartesian coordinates as the dependent variables. These 
equations are nonhomogeneous with their right-hand sides depending both on the 
components of the normal and the mean curvature of the surface; thus reflecting 
some geometrical aspect of the surface in an explicit manner. 

This paper also addresses two very important problems which are germane to the 
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proposed mathematical model for surface coordinate generation. The first problem 
is in regard to the basic structure of the arbitrary specified control functions. This 
aspect has been analyzed as fully as possible in the Appendix A. The second 
problem is to establish clearly the connection, if any, between the present model 
and a model formed by inverting the Laplace system in R3. This analysis, reported 
in Appendix B, shows that the two models exactly coincide when the transverse 
coordinate is orthogonal to the surface. Despite the nonavailability of such 
mathematical justifications, the proposed equations have earlier been used to 
generate 3D coordinates between two given surfaces in [9-111. 

Previous work on the subject of surface grid generation has been done by using 
either the algebraic techniques, [12-141, or using the PDE approach, [ 15-183. All 
the algebraic methods depend very heavily on the use of highly accurate inter- 
polating schemes. In the PDE methods, the model in [15] is derived from the 3D 
Laplace system, which has been discussed more fully in Appendix B of this paper. 
Some of the results in [16-183 are common and in large part depend on the 
generation of a coordinate system in a surface based on an already available system. 

Numerical solution of the proposed equations depends on the availability of the 
surface equation in the Cartesian form either as F(x, y, z) = 0 or z =f(x, y), and on 
the prescription of the data on the bounding curves in the surface which eventually 
form the Dirichlet boundary conditions for the equations. 

Numerical solutions of the proposed equations for the coordinates in either 
simply or doubly connected regions of some known surfaces have been obtained 
and shown in Figs. l-4. It has also been shown that any desired control on the dis- 
tribution of grid spacing can be exercised by a proper choice of the control 
functions; cf. Fig. 4. Extension of the proposed method to arbitrary surfaces is 
purely formal. 

II. NOMENCLATURE 

b,, = n”‘. r,+; coefficients of the second fundamental form in the surface v = const. 
D = second-order differential operator, (Eq. (3.3a)). 
g = det( gU). 
G, = g,, ggp - (gab)*, (v, a, PI cyclic. 
g, = covariant metric components. 
gV = contravariant metric components. 
J = Jacobian determinant. 
kf”), kf;) = principal curvatures at a point in the surface v = const. 
9 = second-order differential operator, (Eq. (3.10a)). 
n”’ = unit normal vector on the surface v = const. - - 
P, Q = control functions. 
Piy = control functions. 
r = (4 Y, z). 
R defined in (3.3b). 
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x’ = 3D curvilinear coordinates. 
xoL = 2D curvilinear coordinates. 
x, y, z = rectangular Cartesian coordinates. 
X,!“) = rectangular components of n”‘; Xj”) = X(‘J, X9) = Y(“), 
@” = Z’“‘. 
Y$ = ; f6(ag,oja.dJ + aggajaxa - agmp/aq, 

the surface Christoffel symbols of the second kind. 
r~.=tg~k(ag,laxj+agj,laxi- agii/aXm), 

the space Christoffel symbols of the second kind. 
Ay)x” = -ghra 

Beltran!;; second-order differential parameter. 

(i) Notation for partial derivatives. 

Also 

ar 
rc=a5’ 

3% 
‘cv =agarl’ 

etc. 
(ii) Note on the use of indices. The Latin indices i, j, k, etc., are used when the 

index rage is from 1 to 3. The Greek indices U, 8, y, etc. (except v, see below), are 
used for the cases when the indices assume only two integer values. 

v = 1: Greek indices a, /I, etc., assume integer values 2 and 3. 
v = 2: Greek indices tl, 8, assume integer values 3 and 1. 
v = 3: Greek indices a, /I, etc., assume integer values 1 and 2. 

(iii) Summation convention. In this paper the summation convention on 
repeated indices& implied when the same index appears both as a lower and as an 
upper index. Thus the summation convention is implied in T; but not in T,,. The 
summation convention is also suspended when one repeated index is enclosed in the 
parentheses, e.g., as in F:). 

III. THE MATHEMATICAL MODEL 

The mathematical basis of the present formulation along with the derivation of 
the model equations which have been used in this paper are available in Refs. 
C&S]. However, for the sake of clarity of exposition we list here only the core steps 
which lead to the final form of the equations. In the ensuing development we shall 
continuously use the conventions and symbols as stated in Section II of this paper. 
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The formulae of Gauss (cf. [6,21]) for a surface x” = const. are compactly writ- 
ten as 

r ,ap = Y$r,a + n’“‘bap. (3.1) 

Inner multiplication of Eq. (3.1) by G, ga8 results in the availability of a vector dif- 
ferential equation 

where 

Dr -I- G (A$“)x6) r,& = n”‘R, Y (3.2) 

D = G, g”Pd,,, (3.3a) 

R = G, g”%,, = (kj”) + I&‘) G,, (3.3b) 

A$“‘.,@ = -g”pY$ (3.3c) 

The vector equation (3.2) provides three scalar second-order partial differential 
equations for the determination of the Cartesian coordinates x, y, z. For a plane 
(R = 0), the Eq. (3.2) reduces to the TTM equations (cf. [l] and the references con- 
tained therein), and in this case the Beltramians A,x’ become the Laplacians V’x”. 

The quantity kj’) + ky) = R/G, is twice the mean curvature at a point of the sur- 
face x” = const. and is invariant to a coordinate transformation in the surface. It can 
be expressed in one of the following two ways: (i) in terms of the partial derivatives 
of r with respect to x6 (6 # v), and (ii) in terms of the partial derivatives of r with 
respect to xi, which also includes the transverse coordinate x”. In the first case 

while for the second case 

tq”) + fq;’ = g”%,,, (3.4a) 

kj’) +/q;) = gw$~‘“‘, (3.4b) 

where Pas are the Christoffel symbols of the second kind in the embedding space, 
with x” as the transverse coordinate, and 

A(V) = &‘I. r .“. (3.4c) 

In the second case only lirst partial derivatives with respect to x” appear which are 
assumed to have been evaluated at the surface. There is, however, no restriction on 
the orthogonality or non orthogonality of xv to the surface. 

The surface-coordinate generating system of equations, with the option of 
arbitrary coordinate control, is now obtained by putting suitable restriction on the 
Beltramians appearing in Eq. (3.2). The most general form one can have is to take 
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where P$ are symmetric in the lower two indices and thus represent six arbitrarily 
chosen control functions. 

We now impose the following important requirement on the functions P$: Zf the 
coordinates are such that the Beltramians vanish, i.e., A~‘x’=O, then the control 
functions P$ vanish individually for all values of 6, tl, /I pertaining to that surface. 
The importance of this restiction can be felt by equating the right-hand sides of Eqs. 
(3.3~) and (3.5) 

g”PP f, = - g”P Y$) (3.6) 

where Y$ are the surface Christoffel symbols of the second kind. Thus, when the 
Beltramians vanish the right-hand side of (3.6) vanishes in the sense of an inner sum 
but the left-hand side vanishes because of the imposed restriction. (It must be noted 
that in a surface or even in the case of curvilinear coordinates in a plane, all the 
Christoffels are not zero). Thus P$ # Y$. For a relation between the values of P$ 
under successive coordinate transformations and also a relation between P$ and 
Y$ refer to Eqs. (A-6), (A-8), and (A-9). 

The generating system is now obtained by substituting (3.5) in Eq. (3.2) as 

Dr + G,( gapP$) r,& = n(“)R. (3.7) 

To be specific, we take the surface x3 = 5 = const. as the given surface and x1 = 5, 
x2 =q. Then using the formulae from the surface theory, g” = g,JG,, g12 = 
-g,JG,, g22 = gdG3, G3 = gll g2, - k12)2, we have 

LZr = d3)R. (3.8) 

From Eq. (3.8) the three scalar equations are 

9x = XC3’R, Yy = YC3’R, c!Tz = ZC3’R, (3.9a, b, c) 

9 = g,,a,, - 2g12acq + g,, a,, + pa, + m,, (3.10a) 

p= g22pf, - &12Pf2 + g,, pi23 (3.10b) 

~=g,,p:,-2g,2p:2+g1*p:2. (3.1Oc) 

Equations (3.9) are the basic generating equations for the curvilinear coordinates 
in a given surface. A question which naturally arises at this stage is as follows: 
What is the connection, if any, between the proposed equations (3.8) for a surface 
and the set of equations obtained by inverting a set of three Poisson’s equations, 
when one of the three coordinates is kept fixed which defines the same surface? To 
answer this question we have shown in Appendix B that if the coordinates <,q, [ 
satisfy the Poisson’s equations and the i-coordinate is orthogonal to the surface [ = 
const., then the resulting equations are in fact the same as (3.8). This analysis also 
establishes a connection between the Laplacians and Beltramians at the surface. 
Equations (3.9a, b) were also obtained through the Poisson’s system in Ref. [ 151 
by assuming that the surface be representable as z = f (x, y) and further, besides 
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being orthogonal the c-coordinates should also be the lines of zero curvature. The 
analysis in Appendix B shows that neither the surface equation in the form z = 
f(x, y) nor the vanishing of curvature of the transverse lines is a prerequiste for 
obtaining Eqs. (3.8). 

IV. NUMERICAL IMPLEMENTATION 

Numerical solution of Eqs. (3.9) can be obtained by any suitable numerical 
method of solution which has proved useful in any elliptic grid generation problem. 
In this paper the equations have been discritized by using central differences for 
both the first and second derivatives and then solved iteratively from an initial 
guess by using the LSOR. The main difference between the coordinates in a flat 
space and in a surface is the appearance of the right-hand side terms in which the 
quantity R can be established a priori. This requires a knowledge of the equation of 
the surface in either the form F(x, y, z) = 0 or z =f(x, y). For arbitrary surfaces the 
equation in the form F(x, y, z) = 0 or z = f(x, y) can be established by the least 
squares method [ 191, and for further accuracy, more x, y, z values in the surface 
can be obtained by using the bicubic spline interpolation of Ref. [20]. Some of the 
known surfaces have been duplicated by using the above techniques while verifying 
the results of this paper. 

Having obtained a twice continuously differentiable form F(x, y, z) = 0, the sum 
of the principal curvatures 

k, + k,, = R/G3 

can be obtained from the well-known result, e.g., [21], 

k, + h, = CC5 + J? WxFA, - FIf’x, - FzFz,) 

+ 2FxFyVtFxy + FxFyFz, -F/T,, - FxW’,,) 

+ U? + f-‘%2FyFzFyz - I;zf’,, - ~LW3ft1, (4.1) 

where 

Formula (4.1) is valid for F, # 0. At a point or on a line if F, = 0, then another form 
of (4.1) can be obtained by replacing x by y, y by z, and z by x in which F, does 
not appear in the denominator. 

To demonstrate the use of Eqs. (3.9) for the generation of surface coordinates, we 
have selected three well-known surfaces for the purpose of introducing a desired 
system of coordinates in them. 

(a). Coordinates in an Elliptic Cylinder Forming a Simply Connected 
Domain. This problem is a prototype of a coordinate generation in a given piece 
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of a surface. The region under consideration forms a simply connected region boun- 
ded by the space arcs v=Q,, q=ql, r=&,, and l=t,. Here ~=I]~,~~ are the 
elliptical arcs in the xy-plane, and 5 = &,, 5 1, are straight-lines parallel to the z-axis. 
The equations are: 

s=q,:rf+y’= 1, 
a2 b2 

z = Z,) (4.2) 

5=5 o:x= -a, y=o,z,<z<z,, 

5=5 ,:~=a, y=o,z,<z<z,. 

The Dirichlet boundary conditions are provided by the data of (4.2) for the 
solution of Eqs. (3.9). 

(b) Coordinates in an Arbitrary Ellipsiod Cut By the Planes z = z,,, z = zl. This 
case is of coordinate generation in a doubly connected region bounded by two 
closed space curves on an ellipsoid. The space curves q = ‘lo and q = qr, are given by 

q=90:$+g+$1’ z=zo, 

1=111. 
x2 y* z* 

.>+g+7=1, Z’Z,. 
(4.3) 

We now imagine a cut joining the curves r] = qO, r] = 11~ while still remaining in the 
surface. As in the 2D case no boundary conditions can be prescribed on the cut line. 
However, since the values of x, y, z above and below the cut should be the same, 
we impose the periodicity conditions: 

x(519 VI = 4tcl, r), Y(5139) = Y(50, rl), 4t,, v)=450, rl). (4.4) 

The Dirichlet conditions (4.3) and the periodicity conditions (4.4) yield a unique 
solution to the set of Eqs. (3.9). 

(c) Coordinates in an Arbitrary Elliptic Parabolid Cut By the Planes z =zO, 
z=z1. This is again the case of coordinate generation in a doubly connected 
region bounded by two closed curves on an elliptic parabolid. The space curves 
q = qO and q = qI are given by 

z = zo, 

1=4’:$+g=z, z=z,. (4.5) 
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Y 

FIG. 1. A simply 
zo = 2.0, z, = 0.0. 

connected region on the surface of an elliptic cylinder; data; a = 1.0, b = 0.5. 

X 

G 

Z 

Y 

FIG. 2. A doubly connected region on the surface of an ellipsoid; data: (I = 5.0, b = 3.0, c = 1.0, and 
cut by the planes z,=O.9, z, =O.O. 
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z 

F Y 
X 

FIG. 3. A doubly connected region on the surface of an elliptic paraboloid; data a = 2.0, b = 1.0, and 
cut by the planes z0 = 0.01 and z1 = 1.96. 

Under the boundary data (4.5) along with the periodicity conditions (4.4) the Eqs. 
(3.9) have been solved. 

In all cases (ak(c) the control functions P& and P$ have been set equal to zero, 
i.e., di3)l = 0, di3)q = 0, and the results are demonstrated in Figs. l-3. Figure 4 
shows the result of a coordinate concentration near the curve z =z,=O.9 of case 
(b). In this case we have taken 

P&=0, p:,=p:,=o 

FIG. 4. Data and configuration same as in Fig. 2. Coordinate contraction near z = z0 with K = 1.1. 
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and 

Ps2 = - (2.0 + (tj - r],) In ic) In fc/( 1.0 + (rj - qO) In K), 

where K = 1.1 is a constant. 

(4.6) 

The computer programs which have been developed to solve the Eqs. (3.9) have 
been used successfully for all the case enumerated above both with and without 
coordinate contraction. Also each case in which the surface can be represented as 
z =f(x, y) was repeated to determine whether it is necessary to solve the z-equation 
too along with the x and y-equation. It has been found that solving all the three 
equations (3.9) or solving only Eqs. (3.9a, b) while taking the z iteratively from z = 
f(x, y) produces almost the same results. 

V. CONCLUSIONS 

A set of second order partial differential equations has been developed and then 
solved numerically to generate the coordinates in a given surface. The proposed 
equations are a logical outcome of the formulae of Gauss and thus explicitly depend 
on some basic differential-geometric properties of the surface in which the coor- 
dinates are to be introduced. The proposed method of surface coordinate 
generation is simple to implement and is capable of extension to arbitrary surfaces. 

APPENDIX A 

In this appendix we further elaborate on the concept of the control functions P$ 
as introduced in Section III, and study their transformation law starting from the 
principle that each one of them vanishes individually when the coordinates satisfy 
the equations A,x* = 0. Further, the relation between P$ and Y$ has also been 
established. 

As a first step we consider Eq. (3.1), which on inner multiplication by gaB yields 

g @ ( & + Pa 5 4 ax6 > 
= n(“)(kjY) + kf;)), 

where according to (3.6), 

(A.1) 

Let x$,-~, and x7,,,,, where m 2 1, be two successive coordinate transformations 
with the transformation Jacobian not equal to zero. Also, we take xx, as those 
coordinates for which 
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and then the equations 

are assumed to be satisfied by taking 

P$z(O, = 0 

for all pertinent values of 6, u, p. 
For the coordinates x&, _, ), x&,,, Eq. (A. 1) is 

( 
3% 

g% ax;l,, aqm, 
ih 

+P6 - ap(m) axtm,, ) 
= n$,(k$“) + k’,;)),,,. 

(A.2) 

(A.31 

(A.41 

(A.5) 

We now use the transformation law 

and the chain rule of differentiation for the first and second partial derivatives of r 
in (A.4). With this done and noting that both n and kj’) + k[;) are invariant to coor- 
dinate transformation, we compare the equation obtained from (A.4) with 
Eq. (A.5). This comparison yields 

Another form can be obtained by introducing 

(A.7) 

where for each fixed v the four C; are obtained from the 3D formula 
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and this (i, S, t), (j, Y, p) are to be taken in the cyclic permutations of 1, 2, 3. 
Further 

Then 

Either one of the equations (A.6), (A.8) is a recursive relation connecting the two 
sets of values of P$ in passing from one coordinate system to another, starting 
from P$(O) = 0. These equations explicitly show the effect of a coordinate transfor- 
mation on the control functions. 

To establish a relation between Pip and Y$, we use the formula 

in Eq. (A.6) and obtain for m 2 1. 

Inner multiplication of (A.9) by g$, proves the validity of Eq. (3.6) for all m 2 1. 

APPENDIX B 

The purpose of this appendix is to demonstrate that the basic equations (Eqs. 
(3.2) or (3.9)) can also be obtained from the inversion of the 3D Laplace system in 
R3 if the transverse coordinate is assumed to be orthogonal to the chosen surface. 
From the ensuing analysis it becomes clear that the condition of zero curvature 
imposed on the transverse coordinate in Ref. [15] is really not needed to obtain the 
surface equations from the inverted 3D Laplace system. The results obtained here 
also establish a connection between the 3D Laplacians of coordinate lines in a sur- 
face with the corresponding Beltramians. 

Let 5, q, 5 be a general curvilinear coordinate system in R3 such that 5, q form the 
coordinates in the surface < = const. with c as the transverse coordinate. Without 
imposing the condition of orthogonality of the c-coordinate, the inversion of the 3D 
Laplacians V2<, V2q, V2[ is given by the equation’ (refer to Eq. (B.3) of Ref. Cl]), 

’ & = (gd*, etc. 



94 2. U. A. WARS1 

g22r55-2g,2rc~+gllr,,+rr{-g:3rt, +2gd~~~rf,-gf,r~, 
+ G3G3 + 2G5G + 2G6G, + sV2t>/g33 + rq{ - g:3r:, 
+ k,, gaC:z - i&f:2 + GJ:, + 2GJ:, + 2GG + gV’v)/g,, 
+r;{-g:3r:,+2g13g23r:2-g:3r:2+G3r:3+2Gsr:3 
+ %C, + sV2Y j/g33 = 0, (B.1) 

where 

g= guG3 + g,,G, + g,,G,, 

G3 = g,, g,, - g:,, G, = g,, g,, - g13 g,,, G,=g,,g,,-g,,g,,, 

and we have made use of the equations 

r.;, = C/f r.p 

with the Latin indices taking all values from 1 to 3. Also r; are the 3-space 
Christoffel symbols as defined in Section II. 

Let II(~) = n be the unit normal vector on the surface [ = const. Then taking the 
dot product of Eq. (B.l) with n (so that r5. n = rV . n = 0) and writing jW = n. rr, we 
get 

gV25 = - g,, G,M3’ + W)l~ + g&r:, - 2g,, g&2 

+g~31-;2-2G,l-;3-2G,l-;3-G3f~3. 03.2) 

Substituting (B.2) in (B.l) and using the equations 

gv25= -g,,g,,r;, +g:,~~,-gllg33~:2+g:3~:2-2g,3g23~~2 

+ &I2 g33c2 - G3r;,-2GSr;,-2G,r;,, (B.3) 

gv21T= -g22g33J;z,+g:3~1-gllg33~2+g:3~2-2g13g23~2 

+2g,,g,,~,-G3~:3-2Gs~:3-2Gs~:3, (B.4) 

we get 

g22rtc -2g12rcq + g,,r,, + (&,,f~, - g,,f:, - g,,f;,) r5 

+(2g,2r:2-g22~,-g,,~2)r,=rrG3(kf3)+kl:))/~. (B.5) 

Equation (B.5) can also be written as 

yr+ C2g12(ri2- Yt2)-g22(G - C- gdG,- G2)l r5 
+ C2g12(C2 - G2) - g22(C:, - r;‘,) - g,,(C2 - G:,)l rq 

= nG3(kj3) + kjf)) + (ri - An) G3(kj3) + ki:))/A, u3.6) 
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where 

9 = g,,a,, - 2g12acq + gd,, + G,(A,~) a, + G~(A~v) a, 
as previously defined in (3.10a). 

It must again be emphasized that rj, are the 3-space Christoffel symbols while 
Y$ are the 2-space surface Christoffel symbols and in general they are not equal to 
each other at [ = const. 

[-Coordinates Orthogonal to the Surface. If the c-coordinates are orthogonal to 
the surface c = const., then 

&?13 = ET23 = 0, 

and in this case it is easy to show that 

where all Greek indices assume only values 1 and 2. Also since c is normal to the 
surface, 

nc3) = n = rJJ&, A=&. 

Thus Eq. (B.6) becomes 

2% = nG3(ki3) + kc3)) II 3 V3.7) 

which is Eq. (3.8); proving the contention set forth at the beginning of this appen- 
dix. 

Under g,, = g,, = 0, since g = g3,G3, we obtain from (B.2)-(B.4) the following 
results. 

v21 = - wg33 - vG3) + kP)lJiG 

Ai = V’t + r:Jgm (B-8) 

A$3'~ =V2ij + c3/g33. 

The Christoffels ri, are as follows: 

r:3 =$ 
I 

2g33. 

581/64/l-7 
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Using (3.4b) it is a straightforward matter to show that 

2G,Jg,,. (B-9) 

(Note that all the c-derivatives appearing in the preceding formulae are those which 
have been evaluated at the surface.) 

Equations (B.8) show clearly the connections between the Laplacians and the 
Beltramians. 
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